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Abstract 

The superposition of left- and right-tlanded forms of a chiral molecule does not exist 
or is at least very unstable. Frequently, this instability is traced back to the coupling 
of the molecule to its environment, e.g. the radiation field or collisions with neighbor 
molecules. The situation is not completely clear, neither theoretically nor experimentally. 
Here, the theoretical aspects and consequences of tile coupling {molecule ~-~ environment} 
are discussed. 

1. Introduction 

Physical systems are automatically coupled to their environment and never 
closed in a strict sense. The influence of the environment may change the system's 
behavior in a qualitative way. A nice example has been proposed by Borel in 1914 
([1], p. 98): There, the influence of a Sirian beetle (of mass lg, 8.3 x 1016m away) 
on a gas at normal conditions in a cube of  10 cm length is estimated. The beetle's 
walk of  just 1 cm changes the (classical mechanical) computation such that the 
position of  an individual particle is changed by approximately 10 cm after 10 -6 
seconds. The cause seems almost negligible, but nevertheless the effect is enormous. 

Here, the coupling between a "small" system (e.g. a molecule) and its environ- 
ment is studied from a quantum-mechanical point of view. "The" environment, 
consisting of  the rest of  the universe, can never be given a precise description. It 
must therefore be replaced by a model environment which mimics certain aspects 
of the real situation. One such aspect is the large - eventually infinitely large - 
number of  the environment's degrees of  freedom. Environments such as 

• the radiation field, 

• the gravitation field, 

• phonons (if the molecule is embedded into a semi-rigid matrix of  other 
molecules), 

° or a "heat bath" 

are treated (or may at least be treated) as systems consisting of  infinitely many 
harmonic oscillators (see e.g. [2-41). Hence, the discussion of  a molecule coupled 
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to infinitely many harmonic oscillators can be expected to describe qualitatively the 
behavior of  the joint system {molecule and environment}. A specific model 
Hamiltonian - the sp in-boson Hamiltonian - will be presented in section 3. 

From a theoretical point of view, it is indispensible to discuss environmental 
effects on molecules. The latter are Eins te in-Podolsky-Rosen  correlated (in short, 
EPR-correlated) with their environment and therefore cmmot be treated as individual 
objects (cf. [5-91). Note that EPR correlations lead to measurable effects [101 even 
if these systems am entirely separated and without any interacting force! It is not 
sufficient to replace the environment by an additional potential: A complete discussion 
of the joint system {molecule and environment} is necessary. Nevertheless, there is 
a chance that an essential part of this joint system behaves again like an object, i.e. 
is not EPR-correlated with the rest of  the system. Such an essential part will be 
called a quasimolecule. Under suitable conditions it behaves just as the isolated 
molecule apart from some restrictions. These restrictions may, for example, refer to 
the states of the quasimolecule, "forbidding" certain superpositions (see section 2) 
of  state vectors. 

The isolated quantum-mechanical molecule is a purely theoretical construction, 
whereas the quasimolecule is the reference point of  the experimentalists. One may 
compare this with the situation of an ion brought into solution. The solvated ion 
carries some layers of water molecules, which changes its mass and its mobility in 
an electric field. The solvated ion corresponds to the above quasimolecule. The 
already mentioned spin-boson Hamiltonian permits us to derive (see section 4) a 
quasimolecule with a superselection rule (see section 2). 

Sometimes it is useful or even necessary to replace a quantum environment 
by a classical one, i.e. a (classical) stochastic process such as Brownian motion or 
white noise [11-13].  This paves the way to environments built up of "collisions with 
neighbor molecules" (cf. [ 14-20])  or to "Onsager-type reaction fields" (cf. [ 12, 16]). 

2. Superselect ion rules 

Handedness of  molecules is an interesting property: A (single) molecule is 
either left- or right-handed and any compromise seems to be excluded. This fact 
contradicts a basic postulate of  traditional quantum mechanics [21], the "superposition 
principle". It says that the superposition 

q '  = c~ ' e  1 + c 2 ~"2 (1) 

of two state vectors q~l and q'2 with complex coefficients cl, c 2 (properly normalized) 
is again a legitimate state vector of  the system in question. 

Superposition of  left- and right-handed state vectors gives rise to a kind of 
intermediate form. A symmetric choice of  the constants c 1 = c 2 (or c I = -c2)  would 
result in a space-inversion invariant state and thus a molecular species which does 
not rotate the plane of  polarization of  light. If the let1- and right-handed lorms have 
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a well-defined nuclear frame, the same is no longer true for their superpositions. The 
traditional chemist's conception of  a molecule is not compatible with the superposition 
principle. 

The expectation value of an arbitrary observable T with respect to the state 
vector W of  eq. (1) is given by 

(WITW) = Icl 12 (Wll TW1 )+  It212 (We] TW2 ) 

+ (cl)*c2 (W1 [ T W 2 ) +  Cl (c2)'(W21TW1 ). (2) 

Here, ( • l" ) is the ordinary scalar product for state vectors in the underlying Hilbert 
space (cf. e.g. [22]). As observables r one may, for example, consider position and 
momentum operators or spin operators. If the "transition probabilities" I~'~11 T ~  2) 12 
and I(W21 r~t',) 12 vanish for arbitrary observables T, one says that the state vectors 
W 1 and W 2 are separated by a superselection rule (cf. [23]). The expectation value 
(2) is then given for arbitrary T as 

(WITW) = Ic l l2(WIITW1)+Ic2Ia(W21TW2) ,  (3) 

i.e. as a weighted sum of expectation values (W~ITW1) and (W2I TW2). If such a 
decomposi t ion exists, one calls the expectation value (3) a mixed state; otherwise, 
it is called pure. Mixtures correspond to a statistical ensemble (e.g. a racemate), 
whereas an individual system (e.g. a single molecule) is described by a pure state 
(cf. [24,25]). Note that here only single molecules are under discussion and never 
racemates t. 

If the superposition (1) leads to a pure (respectively, mixed) state, it is called 
coherent (respectively, incoherent). Incoherent superpositions of  pure states, i.e. 
superpositions leading to a mixed state, leave the domain consisting of pure states. 
This fact is ordinarily expressed by saying that "incoherent superpositions are 
forbidden". This diction refers to the distinct interpretation of  mixed and pure states, 
but does not forbid mixed states as such. 

The above definition of a superselection rule is a little sloppy since various 
different state vectors may give rise to the same expectation value, that is, to the 
same state. Hence, for two states to be separated by a superselection rule one has 
to require that the transition probabilities between arbitrary state vectors implementing 
them vanish. 

In traditional Hilbert-space quantum mechanics,  superselection rules do not 
appear in a natural way. Sometimes they can be introduced ad hoc, excluding certain 
state vectors without a proper foundation. Here, the question will be posed if 
superselection rules can be derived without ad hoc assumptions. 
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Superselection rules arise with most commonplace phenomena: The motion of  
a billiard ball, for example, can be described perfectly in quantum mechanics by 
wave packets. Superposition of  two wave packets, centered around different positions, 
leads to a state which has no (even vaguely defined) position anymore. Multiple 
superposition of  wave packets might be used to prepare a billiard ball in a box as 
a standing wave (cf. [26,27]). This contradicts commonplace experience. 

For chiral state vectors, a superselection rule seems to appear if the difference 
between the energy of the (symmetric, space-inversion invariant) ground state and 
the energy of the first excited state (with reference to vibrations of the nuclei) is very, 
small. For the amino acid alanine, this energy difference has been estimated in [28] 
as lying around 10 -v° atomic units. Alanine seems to be chiral (in the sense of a 
superselection rule). The corresponding energy difference for ammonia (or its 
potentially chiral derivate NHDT) is around 10 -7 atomic units. For ammonia, it 
seems possible to prepare arbitrary superpositions [29], for example, the proper 
ground state (without nuclear frame!) or the "pseudochiral" pyramidal states. The 
former is stationary, whereas the latter tunnel back and forth. Handed states are 
called "pseudochiral" if they are not separated by a superselection rule. 

The problem of chiraliO, cannot be settled by the generally accepted argument 
of  Hund [30], which says that chiral states - once prepared - are stable for a very 
long time. This argument does not answer the questions: "Why have superpositions 
of  chiral states not yet been prepared?" or "Are superpositions of  chiral states 
particularly unstable?" (cf. [31]). Note that the case of  billiard balls is a completely 
analogous one. There, the argument of Hund corresponds precisely to the argument 
of Born [27] saying that wave packets - once prepared - are stable for a very long 
time. Again, questions concerning superpositions remain unanswered, a fact which 
was stressed by Einstein [26,27]. 

Certain superpositions are perhaps short-lived and not easily detectable. For 
the specific situation of chirality, an experiment preparing superpositions of chiral 
states has been proposed by Quack [32, 19]. This experiment refers to an isolated 
chiral molecule in the Born-Oppenheimer approximation. The electronic ground- 
state potential is supposed to be of double-minimum form. The potential for the 
electronically excited state is supposed to have only one minimum. "Chiral" states 
of the molecules can then but exist for the electronic ground state and not for the 
excited one. According to the usual selection rules, one should have a non-zero 
transition probability between the (spectroscopically prepared) non-chiral excited 
state and the superposition of the chiral ground states. The superposition of chiral 
ground states should thus be accessible by spectroscopic methods. It could be detected 
and distinguished from chiral states, since the respective selection rules are different. 

Perhaps it is not so relevant if superpositions are short-lived (see section 6) 
or do not exist at all. Both variants are more closely related than might appear at 
f irst  sight. First, the latter variant is discussed (sections 3 and 4). It is shown that 
superselection rules can be derived by considering the coupling of  a molecule to an 
environment with infinitely many degrees of  freedom. 
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. The sp in-boson  Hamil tonian as a model for the coupling of  a molecule 
to  i ts  e n v i r o n m e n t  

The spin-boson Hamiltonian discussed here describes the coupling of one 
spin (= a two-level system) to an environment consisting of infinitely many  harmonic 
oscillators (bosons): 

H = fieo'l N 1 (4a) 

ea~ 

+ I ®  ~ / ~  * co(n)an an (4b) 
n = l  

+ o-s ® ,a,(n){an (4c) 
n = l  

Part (4a) corresponds to the isolated spin, part (4b) to the free environment, and part 
(4c) to the coupling between spin and environment. 

The observables of the two-level system are 2 x 2 matrices, in particular the 
Pauli matrices 

°, oi; . ,=(; Ol) 
The two-dimensional Hilbert space of the spin can be thought of  as being built 
up of a ground state and an excited state of the molecule. As parameters of this 
molecular caricature, only the level splitting e enters. The Hamiltonian of the isolated 
spin (= the isolated molecule) is given by (4a), with 2~/e being the difference of the 
corresponding energy eigenvalues. 

The observables of the environment are "boson operators" a n, n = 1, 2 . . . . .  
and their adjoints a* fulfilling the commutation relations 

[an, an'] = 0, [a,~, an ' ]  = 6 , ,n ' .  (6) 

Here, 6n,  is the Kronecker delta (0 or 1, depending on whether n and n' are different 
or identical). The boson operators can be replaced by position and momentum 
operators, related by 

an =:  (2 f i ) - l /Z { (m(n )co (n ) ) l / 2Qn  + i ( m ( n ) c o ( n ) ) - l / 2 p n } ,  n = 1,2 . . . . .  (7) 

The masses m ( n )  > 0 can be fixed arbitrarily. The frequencies co(n) - already arising 
in (4b) - are supposed to be strictly positive. 
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The Hamiltonian of the isolated environment (4b) consists of Hamiltonians for 
harmonic oscillators with frequencies co(n). Writing these Hamiltonians in the form 

ti co a*a (8) 

is already very helpful when only a single harmonic oscillator is discussed (see [22], 
section 12.6). The boson operator a* is often called a "creation" operator, whereas 
a is sometimes called an "annihilation" operator, since they allow us to go up and 
down the eigenvalues of (8). The zero-point energy is omitted here. It gives but a 
shift of the energy scale and diverges for infinitely many modes. In a precise 
discussion, one would replace the Hamiltonian (4) by the respective Heisenberg 
dynamics (cf. [33]). Anyway: Omitting the zero-point energy is perfectly legitimate 
and not just a trick to obtain something reasonable. Every harmonic oscillator is 
coupled to the spin by a dipole-type coupling (4c) with a real coupling constant X(n). 
Instead of countably many modes, one could use continuously many. Here, only the 
most simple version is considered. Physically, this does not change very much. 

The frequencies and coupling constants should fulfill the condition 

N 
I;t(n)lz < (9) 

,,=1 Ico(n)l 

This guarantees that the Hamiltonian (4) is bounded below, i.e. the respective energies 
cannot be arbitrarily negative. 

The spin-boson Hamiltonian is invariant under the space-inversion sym- 
metry t 

t(0.1 ) := 0.1, (10a) 

t(0.2) : = - 0 2 ,  (10b) 

t(0.3 ) := -0"3, (10c) 

t(an) : = - a n ,  n =  1,2 . . . . .  (10d) 

Left- and right-handed states are transformed into one another by this symmetry. 
The s;vin-boson Hamiltonian is one of  the few model Hamiltonians for  the 

coupling of  a "small system" (e.g. a molecule) to its environment. It can be derived 
:from the coupling of a molecule to the radiation field (cf. [28,34-37]) by using 
certain approximations (see section 5). The spin-boson Hamiltonian arises in other 
contexts, as for SQUIDS or the coupling of a "small system" to phonons (cf. [3, 38,20]). 
Here, the spin-boson Hamiltonian is particularly interesting since one c a n -  depending 
on the parameters e, c0(n), ~(n) - derive a superselection rule. 
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4. Derivation of superselection rules for the spin-boson model 

The Hamiltonian (4) may be written down for finitely many modes of the 
environment and is then uniquely defined up to multiplicity. This is a consequence 
of the theorem of Stone and Von Neumann ([22], section 12.3). It says that the 
Heisenberg commutation rules ~) [39] (or the Boson commutation rules (6)) determine 
the respective position and momentum operators (boson operators) uniquely up to 
multiplicity. It is then legitimate to use the SchrOdinger representation of position 
and momentum operators {Qsc~R' PSCHR} on the Schn3dinger Hilben space denoted 
here by 5~CHR. "Up to multiplicity" means that the SchrOdinger representation can 
be blown up by tensoring an additional Hilbert space M'leading to position and 
momentum operators 

O := QSCHR ® 1, (1 la) 

P := PSCHR ® I (1 lb) 

on the Hilbert space 

Hsclt R ® 9/" (12) 

instead of the original ones. The unit operator I acts trivially on _q{ Multiplicity does 
not change the interrelations between the operators built up from position and 
momentum operators, and hence does not change the physics based on these position 
and momentum operators (cf. [33], definition 4). It follows that all representations 
of the Heisenberg or boson commutat ion relations are physically equivalent for 
finitely many degrees of freedom (= finitely many position and momentum operators). 

For infinitely many degrees of  freedom, this result breaks down. There 
exist (myriads of) physically inequivalent representations of the commutat ion 
relations (6) on Hilbert spaces. "Representation" means that operators a,, and a ,  
n = 0, 1, 2 . . . . .  exist - acting on some Hilbert space - which fulfill the commutat ion 
relations (6). A particular example is the Fock representation (see [22], section 15.5) 
on the Fock-Hilbert space 5[ v. The Hilbert space for the full sp in -boson  model  (and 
not just the boson field) in the Fock setting is given as a tensor product with a two- 
dimensional Hilbert space ~2 

¢2 ® (13) 

The 2 x 2 matrices act naturally on this Hilbert space, namely, as before on (I? 2 and 
trivially on 5~.  The 2 x 2 matrices referring to the spin can always be introduced 
in a similar way and do not present any additional difficulties. 

1)To exclude pathological cases, the Heisenberg commutation rules must be replaced by their exponential 
form (see [39], section VIII.5). 
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Historically, the Fock representation played an important role. It is characterized 
by the condition that the Hamiltonian (4b) of the free boson field admits a ground 
state, the so-called Fock state or vacuum. Exclusive use of the Fock representation 
would perpetuate the situation of the Stone-Von Neumann scheme. However, note 
that the Fock representation does not admit superselection rules! Hence, the exclusive 
use of the Fock representation leads to empirically incorrect results. On the formal 
level, already scaling transformations (scaling the position and momentum operators 
in a way to preserve the Heisenberg commutation relations) lead out of Fock space! 
Hence, one should not exclusively restrict attention to the Fock representation. 

"Physical inequivalence" can be given a precise definition (cf. [33], defini- 
tion 5). Here, only some aspects of  physical inequivalence are considered: 

• There exist representations admitting superselection rules and some which 
do not. Representations of the former and latter type are definitely not 
physically equivalent. 

• The spin-boson Hamiltonian is well defined in some representations but 
not in all of them. As already stated, there is no difficulty in defining the 
spin-boson Hamiltonian for finitely many modes of  the field and "well 
defined" is to say that the infinite-mode limit of  these Hamiltonians exists. 2) 

° If Hamiltonians exist in two representations, both corresponding to the 
formal spin-boson Hamiltonian (4), their spectral structure can still be 
very different. For example, one of them may admit a ground state and 
the other not. A "ground state" is characterized just as in ordinary quantum 
mechanics as an eigenstate of the Hamiltonian with an eigenvalue at the 
lower end of the Hamiltonian's spectrum. 

The use of representations physically inequivalent to the Fock representation 
can be nicely illustrated by the spin-boson model. The spin-boson Hamiltonian can 
be properly defined in the Fock situation, i.e. on the Hilbert space (13). Depending 
on its parameters (level splitting, frequencies, coupling constants), it may admit a 
ground state or not. In the former case, this ground state is the only one in Fock 
space. In the latter case, it still has (at least two) ground states, but these ground 
states do not live in Fock space (more precisely: in the Hilbert space (13)) but in 
other representations. 

For the spin-boson model with non-zero level splitting e ~  0 (and a broad 
class of representations, see [40]), the following holds: Let W~ and W2 be different 
ground states of the spin-boson Hamiltonian (in some fixed representation). Then 
• ~ and ~2 are separated by a superselection rule. In particular, there is a superselection 
rule separating ground states which are mirror-images of each other, i.e. related to 
each other by the transformation (10). Hence, all transition probabilities I < ~l[ T~z )12 
vanish, where T is some arbitrary operator built up from boson operators and spin 

z) This limit is taken in the strong resolvent sense (see [39], section VIII). 
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matrices. "Built up" means that one may use polynomials of the mentioned operators 
(e.g. 27az34a 3 + o'1a55) and limits [33] of such polynomials. 

Hence, if one can show that there exist ground states with a mirror-image 
relationship, then these ground states are separated by a superselection rule. In other 
words: These ground states are chiral. If there is no superselection rule, then only 
one ground state exists which, incidentally, lives in a Fock situation with Hilbert 
space (13) [41]. This latter case corresponds to the situation of ammonia  in the 
heuristic discussion above. 

Ground states of the sp in -boson  model with a mirror-image relationship can 
only appear if the coupling constants A.(n) behave suitably for low frequencies: The 
condition 

u 12 
I~(n) _ oo (14) 

. = 1  c° (n)  2 

for the so-called "infrared singularity" (in short: IR-singularity) has to be ful- 
filled [28,41]. The "strength" of the IR-singularity is measured by the coefficient ~" 
in the  proportionality relation 

N 

I&(n)l z exp{-co(n)  l t l}  ~ Itl -~ (forlarge times I tl). (15) 
n = l  

For ~" strictly larger than 2, there is no IR-singularity. This situation is called 
"superohmic" in the terminology of Leggett [3]. The physically most  important case 
with ~=  2 is called "ohmic": condition (14) is fulfilled. For 1 < ~< 2, condition (14) 
is again fulfilled and the IR-singularity is called "subohmic". In the superohmic 
situation, one has no superselection rule with respect to ground states. For ohmic 
and subohmic behavior, one may get ground states separated by a superselection rule 
(depending on the parameters e . . . .  ). The coupling strength p in figs. 1" and 2 is 
the proportionality constant of relation (15). 

For an ohmic/subohmic  IR-singularity, the "phase diagrams" of figs. 1 and 2 
proposed by Spohn arise ([40-44],  summarized in [33]). 

In the ohmic case, it is necessary to have a certain coupling strength to get 
ground states which are separated by a superselection rule. In the subohmic situation, 
one gets a superselection rule for every coupling strength if the level splitting e is 
small enough (but not necessarily zero). For the special case e = 0, a superselection 
rule arises for arbitrary coupling strength, if the IR-singularity holds. This is not 
revealed in the figures. 

The spin-boson Hamiltonian gives rise to superselection rules for a suitable 
choice of its parameters. The derivation of these superselection rules is based on 
a purely quantum-mechanical starting point. Note that the spin-boson Hamiltonian 
is a model: Hamiltonians of realistic situations can only be brought to the form of 
the spin-boson Hamiltonian by (severe) approximations. 
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Fig. 1. Phase diagram of the spin-boson model with ohmic IR-singularity 
depending on the level splitting E and the coupling strength p. A 
superselection rule arises for parameters in the shaded region. 

P 

Fig. 2. Phase diagram of the spin-boson model with subohmic IR- 
singularity depending on the level splitting ~ and the coupling strength 
p. A superselection rule arises for parameters in the shaded region. 
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5. Does the radiation field generate molecular superselection rules? 

The Hamiltonian for the joint system {molecule and radiation field} (cf. 
[34,36,37]) can be brought into the form of the spin-boson Hamiltonian by certain 
approximations: The molecule has to be replaced by two suitable states (e.g. the 
ground state and some excited state). Furthermore, one has to 

(i) omit the so-called A2-term (where A is the vector potential of the radiation 
field), or 

(ii) introduce the dipole-approximation [37]. 

Both approximations (i) and (ii) are severe interventions. In case (i) one gets an 
ohmic IR-singularity [28], whereas for (ii) the IR-singularity is eliminated altogether 
(cf. [37], section Aw.2, and [45,46]). 

The generation of chiral ground states by the radiation field was proposed for 
the first time by Pfeifer in this thesis [28]. He used a variational principle for Hartree 
(= product) states. His phase diagram does not differ for the ohmic and subohmic 
situation. The borderline between the two relevant regimes (with or without 
superselection rule) is given by the dotted line in figs. 1 and 2. Asymptotically (for 
large coupling strength), the phase diagram by Pfeifer coincides with the correct 
ones of figs. 1 and 2. For certain spin-boson Hamiltonians with more than two 
"molecular" levels it seems that the correct diagrams approach more and more the 
diagram proposed by Pfeifer [47]. 

The discussion of ground states of the full Hamiltonian for the joint system 
{molecule and environment} is difficult and unsettled up to now. Hence, the question 
in the title of this section remains open. One should perhaps go beyond ground 
states. It can be made plausible [48] that pure states should be used, but these pure 
states need not necessarily be ground states or even stationary states. Superselection 
rules arise in all systems with infinitely many degrees of freedom, even for the 
radiation field without an IR-singularity. 

6. Is molecular  chirality generated by collisions with neighbor molecules? 

"Collisions" with neighbor molecules could be responsible for the destabilization 
of superpositions of chiral states (cf. [14, 19,20]). Usually, the dynamics for such a 
process consists of two parts, one for the isolated molecule and another special one 
for the collisions. It is then a standard assumption that a collision of the considered 
chiral molecule produces a "dephasing", i.e. the molecule is localized in one of the 
wells of its double-well potential. In the present context, "localized" is to say that 
the molecule acquires an approximate nuclear frame, corresponding to the position 
of the respective well. 

The dynamics used is a linear density operator dynamics, eventually a 
semigroup, .e.g. of Bloch type. Taking the localized states, say hu E and huR' as basis 
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vectors, the "dephasing" is described by the shrinking of the outer-diagonal elements 
of the respective density matrix. 

The dephasing assumption is perhaps supported by experimental results 
(cf. [49-51,29]). The first three cited papers refer to the pressure dependence of the 
ammonia inversion spectrum, the last one to molecular beam experiments. Ammonia 
under high pressure shows a "collision" broadening of the inversion line and the 
approximate resonant frequency tends to zero at a pressure of about 2 atmospheres. 
One interpretation of these facts might be that the totally symmetric form of ammonia 
is destabilized by collisions. This interpretation is not actually confirmed, neither 
theoretically nor experimentally. On the theoretical side, it should be mentioned that 
a molecule's localization is a measurement-type process which is notoriously difficult 
to derive. 

An example for the derivation of measurement-type processes has been given 
in [12,52]. There, the starting point is a spin-boson Hamiltonian of type (4). As a 
result, one obtains a SchrOdinger-Langevin stochastic differential equation which 
eventually could accomplish the prescribed goal. 

Collisions with neighbor molecules can be described by perturbation of 
the molecular parameters. Think of a (Born-Oppenheimer) double-minimum 
potential which is stochastically perturbed. This gives again rise to a stochastic 
differential equation, sending pure states of the molecule into pure states. "Stochastic" 
means that the state of the environment is not fixed uniquely (but only with a 
certain probability). The dynamics of the molecular state depends of course on 
the state of the environment. Hence, all statements, e.g. on localization, are 
probabilisitic. Averaging over all possible states of the environment then results 
in a density operator dynamics (see above). The dynamics for pure states 
corresponds to an ontic interpretation, describing a single molecule. The associ- 
ated density operator dynamics refers to an epistemic interpretation, describing a 
statistical ensemble. More precise information is given by the dynamics for 
pure states. The density-type dynamics might even be compatible with dif- 
ferent dynamics for pure states (or with no one at all) and hence is difficult 
to interpret. 

Depending on the molecular and environmental parameters, one might 
expect a (dynamical) localization with respect to the BO-potential. Such a process 
would correspond to the first variant of a superselection rule mentioned at the 
end of section 2: "Superpositions are short-lived and decay into their constituents". 
Results in this direction do not seem to exist. Nevertheless, the results of [53-56] 
could be considered as a hint in the direction mentioned. In these papers, it is shown 
that a "small" stationary perturbation of the double-minimum potential leads to 
localized eigenfunctions. These results cannot be directly applied to the problem of 
chirality as defined above (see section 2), since they in no way forbid the superposition 
of localized (eigen-)states. A similar remark could be made concerning solutions of 
the chirality problem based on weak interactions/parity violation~weak neutral current 
(cf. [57,32,58]). If the Hamiltonian loses its space-inversion symmetry by weak 
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interaction terms, then the eigenfunctions have a tendency to be "localized", but 
superposition is not forbidden! 

In [16], a mechanism for the stabilization of localized states is presented: 
Localization leads to a nonvanishing dipole moment (1~). This dipole moment polarizes 
the environment and generates a reaction field E, R, collinear with # so that the 
interaction - #  T_, R is negative and tends to stabilize the nonsymmetric state under 
consideration. The above-mentioned SchrOdinger-Langevin equation [12,52] could 
serve as a model for this process since it exhibits various types of reaction fields. 

7. Concluding r emarks  

The problem of chirality is a special version of the more general question 
asking for the origin of superselection rules. The deeper reason for these problems 
is the incompatibility between the formalism of traditional quantum mechanics [21] 
and the commonplace experience that superselection rules exist. It is a modest 
modification (with dramatic physical consequences) not to insist any longer on the 
Fock representation of the boson commutation rules (6). Considering arbitrary 
representation of (6) opens the way for a proper discussion of infinite systems: 
Superselection rules arise and the "only" problem is to choose physically sensible 
ones. "Small" systems (e.g. molecules) may acquire superselection rules through the 
coupling to an environment with infinitely many degrees of freedom (see section 4). 
The problem of chirality can then be discussed as a problem of stability: Superpositions 
of chiral states seem to be unstable under outer perturbations. Unfortunately, this 
conception has yet the status of  a conjecture. For none of the discussed environments 
have superselection rules been derived rigorously. Precise results can be obtained 
only for the semirealistic spin-boson Hamiltonian (and related models). 

The experimental situation is not very satisfactory either. All presently available 
experimental evidence is compatible with the idea that chirality - and all other 
above-mentioned candidates - are indeed superselection rules. Nevertheless, it could 
be that nobody has tried with enough skill to prepare superpositions of chiral states. 
Eventually, these unstable states could be prepared by the screening of all outer 
influences (radiation field, collisions . . . .  ). 
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